论文标题

基于自适应的共振理论基于拓扑聚类,具有分裂性等级结构,能够持续学习

Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning

论文作者

Masuyama, Naoki, Amako, Narito, Yamada, Yuna, Nojima, Yusuke, Ishibuchi, Hisao

论文摘要

自适应共振理论(ART)被认为是实现持续学习的有效方法,这要归功于其处理可塑性稳定性困境的能力。然而,通常,基于艺术的算法的聚类性能很大程度上取决于相似性阈值的规范,即警惕参数,该参数依赖于数据依赖并用手指定。本文提出了一种基于艺术的拓扑聚类算法,其机制自动估计数据点分布的相似性阈值。此外,为了改善信息提取性能,通过向所提出的算法引入层次结构,提出了一种能够连续学习的分裂分层聚类算法。实验结果表明,所提出的算法具有与最近提供的最新层次聚类算法相当的较高的聚类性能。

Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源