论文标题
$ \ MATHCAL {M} _ {0}的整体食物环(\ Mathbb {p}^r,d)$,对于$ d $奇数
The integral Chow ring of $\mathcal{M}_{0}(\mathbb{P}^r, d)$, for $d$ odd
论文作者
论文摘要
对于任何奇数整数$ d $,我们为堆栈$ \ mcal_ {0}(\ pro^r,d)$的整体食物环提供了演示文稿,作为多项式环$ \ z [c_1,c_2] $的商。我们描述了一组有效的生成器,以实现关系的理想,并以生成系列形式计算它们。本文以一些示例的明确计算为$ d $和$ r $的明确计算,以及对最小发电机集的猜想。
For any odd integer $d$, we give a presentation for the integral Chow ring of the stack $\Mcal_{0}(\Pro^r, d)$, as a quotient of the polynomial ring $\Z[c_1,c_2]$. We describe an efficient set of generators for the ideal of relations, and compute them in generating series form. The paper concludes with explicit computations of some examples for low values of $d$ and $r$, and a conjecture for a minimal set of generators.