论文标题

第一次AI4TSP竞赛:学习解决随机路由问题

The First AI4TSP Competition: Learning to Solve Stochastic Routing Problems

论文作者

Bliek, Laurens, da Costa, Paulo, Afshar, Reza Refaei, Zhang, Yingqian, Catshoek, Tom, Vos, Daniël, Verwer, Sicco, Schmitt-Ulms, Fynn, Hottung, André, Shah, Tapan, Sellmann, Meinolf, Tierney, Kevin, Perreault-Lafleur, Carl, Leboeuf, Caroline, Bobbio, Federico, Pepin, Justine, Silva, Warley Almeida, Gama, Ricardo, Fernandes, Hugo L., Zaefferer, Martin, López-Ibáñez, Manuel, Irurozki, Ekhine

论文摘要

本文在国际人工智能会议2021(IJCAI-21)上报道了第一次关于旅行推销员问题(TSP)的国际国际竞赛(TSP)。 TSP是经典组合优化问题之一,许多变体灵感来自现实世界应用。第一次比赛要求参与者开发算法,以解决随机权重和时间窗口(TD-OPSWTW)的时间依赖于定向的问题。它专注于两种类型的学习方法:基于替代的优化和深度强化学习。在本文中,我们描述了问题,竞争的设置,获胜方法,并概述了结果。这项工作中描述的获胜方法提出了将AI用于随机路由问题的最新方法。总体而言,通过组织这项竞赛,我们将路由问题作为AI研究人员的有趣问题设定。该问题的模拟器已进行开源,可以被其他研究人员用作新的AI方法的基准。

This paper reports on the first international competition on AI for the traveling salesman problem (TSP) at the International Joint Conference on Artificial Intelligence 2021 (IJCAI-21). The TSP is one of the classical combinatorial optimization problems, with many variants inspired by real-world applications. This first competition asked the participants to develop algorithms to solve a time-dependent orienteering problem with stochastic weights and time windows (TD-OPSWTW). It focused on two types of learning approaches: surrogate-based optimization and deep reinforcement learning. In this paper, we describe the problem, the setup of the competition, the winning methods, and give an overview of the results. The winning methods described in this work have advanced the state-of-the-art in using AI for stochastic routing problems. Overall, by organizing this competition we have introduced routing problems as an interesting problem setting for AI researchers. The simulator of the problem has been made open-source and can be used by other researchers as a benchmark for new AI methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源