论文标题

更高的可不同性导致BESOV空间的规模到一类双相障碍问题

Higher differentiability results in the scale of Besov spaces to a class of double-phase obstacle problems

论文作者

Grimaldi, Antonio Giuseppe, Ipocoana, Erica

论文摘要

我们研究了解决方案梯度梯度的较高分数可分离性能,即形式的变化障碍物问题\ begin {chater*} \ min \ biggl \ {\int_Ωf(x,x,x,x,w,d,dw)d x \:\ w \ in \ nathcal {k}_ψ(k})表格\ begin {qore*} f(x,w,z)= b(x,w)(| z | | |^p+a(x)| z |^q),\ end {equation*},其中$ω$是$ \ \ mthbb {r}^n $ in w^n $ in w^in w^^in w^^^^^^{1,p^{1,p^{ \ textit {障碍}和$ \ Mathcal {k}_ψ(ω)= \ {w \ in W^{1,p}(p}(ω):w \ geqψ\ \ text {a.e。 in} \ω\} $是一类可允许的功能。假设障碍物的梯度属于合适的BESOV空间,我们能够证明该解决方案的梯度保留了一些分数可不同性属性。

We study the higher fractional differentiability properties of the gradient of the solutions to variational obstacle problems of the form \begin{gather*} \min \biggl\{ \int_Ω F(x,w,Dw) d x \ : \ w \in \mathcal{K}_ψ(Ω) \biggr\}, \end{gather*} with $F$ double phase functional of the form \begin{equation*} F(x,w,z)=b(x,w)(|z|^p+a(x)|z|^q), \end{equation*} where $Ω$ is a bounded open subset of $\mathbb{R}^n$, $ψ\in W^{1,p}(Ω)$ is a fixed function called \textit{obstacle} and $\mathcal{K}_ψ(Ω)= \{ w \in W^{1,p}(Ω) : w \geq ψ\ \text{a.e. in} \ Ω\}$ is the class of admissible functions. Assuming that the gradient of the obstacle belongs to a suitable Besov space, we are able to prove that the gradient of the solution preserves some fractional differentiability property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源