论文标题
使用Wi-Fi频道状态信息中的监视视频流中的伪造攻击检测
Forgery Attack Detection in Surveillance Video Streams Using Wi-Fi Channel State Information
论文作者
论文摘要
网络安全漏洞将监视视频流暴露于伪造攻击中,根据该攻击,真实的流被伪造以隐藏未经授权的活动。传统的视频取证方法可以在相对较长的视频剪辑上使用时空分析来定位伪造痕迹,同时实时伪造检测缺乏。最近的工作将时间序列摄像头和无线信号相关联,以检测循环视频,但无法实现细粒度的伪造本地化。为了克服这些局限性,我们提出了安全置态,这利用了监视和Wi-Fi基础设施的普遍共存,以实时和细粒度的方式抵抗视频伪造攻击。我们观察到,共存的摄像头和Wi-Fi信号传达了人类的语义信息,并且在视频流上伪造攻击将使此类信息通信分解。特别是,可检索的人姿势特征首先是从并发视频和Wi-Fi通道状态信息(CSI)流中提取的。然后,开发了一个轻巧的检测网络,以准确发现伪造攻击,并设计了有效的定位算法来无缝跟踪视频流中的伪造痕迹。我们使用一台Logitech摄像头和两个Intel 5300 NIC实现安全置孔,并在不同的环境中对其进行评估。固定孔可实现98.7%的高检测精度,并将播放和篡改攻击的异常物体定位。
The cybersecurity breaches expose surveillance video streams to forgery attacks, under which authentic streams are falsified to hide unauthorized activities. Traditional video forensics approaches can localize forgery traces using spatial-temporal analysis on relatively long video clips, while falling short in real-time forgery detection. The recent work correlates time-series camera and wireless signals to detect looped videos but cannot realize fine-grained forgery localization. To overcome these limitations, we propose Secure-Pose, which exploits the pervasive coexistence of surveillance and Wi-Fi infrastructures to defend against video forgery attacks in a real-time and fine-grained manner. We observe that coexisting camera and Wi-Fi signals convey common human semantic information and forgery attacks on video streams will decouple such information correspondence. Particularly, retrievable human pose features are first extracted from concurrent video and Wi-Fi channel state information (CSI) streams. Then, a lightweight detection network is developed to accurately discover forgery attacks and an efficient localization algorithm is devised to seamlessly track forgery traces in video streams. We implement Secure-Pose using one Logitech camera and two Intel 5300 NICs and evaluate it in different environments. Secure-Pose achieves a high detection accuracy of 98.7% and localizes abnormal objects under playback and tampering attacks.