论文标题

局部适应性良好的二维库奇问题,即无限度的真空度完全可压缩的磁性水力动力学方程

Local well-posedness to the 2D Cauchy problem of full compressible magnetohydrodynamic equations with vacuum at infinity

论文作者

Chen, Hong, Zhong, Xin

论文摘要

本文涉及整个平面中二维(2D)完整可压缩的磁性水力动力(MHD)方程的问题。通过空间加权能力法,我们得出了强溶液的局部存在和独特性,规定在无穷大时初始密度和初始磁场衰减不会太慢。请注意,初始温度无需在无穷大时缓慢衰减。特别是,允许​​内部域和远场处的真空状态。

This paper concerns the Cauchy problem of two-dimensional (2D) full compressible magnetohydrodynamic (MHD) equations in the whole plane $\mathbb{R}^2$ with zero density at infinity. By spatial weighted energy method, we derive the local existence and uniqueness of strong solutions provided that the initial density and the initial magnetic field decay not too slowly at infinity. Note that the initial temperature does not need to decay slowly at infinity. In particular, vacuum states at both the interior domain and the far field are allowed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源