论文标题

广义线性因果网络的分布式学习

Distributed Learning of Generalized Linear Causal Networks

论文作者

Ye, Qiaoling, Amini, Arash A., Zhou, Qing

论文摘要

我们考虑从存储在多台机器上的数据中学习因果结构的任务,并提出了一种新型的结构学习方法,称为“分布式退火”,以正则可能性分数(DARLS)解决此问题。我们通过定向的无环图对因果结构进行建模,该图形被广义线性模型参数化,以便我们的方法适用于各种类型的数据。为了获得高分的因果图,DARLS模拟了一个退火过程,以在拓扑状态的空间上进行搜索,其中通过分布式优化方法找到与类别兼容的最佳图形结构。该分布式优化依赖于本地机器和中央机器之间的多回合通信来估计最佳结构。我们将其融合到整体分数的全局优化器,该分数在本地计算机上计算出的所有数据。据我们所知,Darls是使用这种理论保证的学习因果图的第一个分布式方法。通过广泛的仿真研究,Darls与分布式数据的现有方法表现出了竞争性能,并获得了可比的结构学习准确性和测试数据的可能性,并使用应用于所有本地机器的汇总数据的竞争方法。在使用分布式芯片序列数据对蛋白质-DNA结合网络进行建模的现实应用程序中,DARL比其他方法表现出更高的预测能力,这在估计分布式数据的因果网络方面具有很大的优势。

We consider the task of learning causal structures from data stored on multiple machines, and propose a novel structure learning method called distributed annealing on regularized likelihood score (DARLS) to solve this problem. We model causal structures by a directed acyclic graph that is parameterized with generalized linear models, so that our method is applicable to various types of data. To obtain a high-scoring causal graph, DARLS simulates an annealing process to search over the space of topological sorts, where the optimal graphical structure compatible with a sort is found by a distributed optimization method. This distributed optimization relies on multiple rounds of communication between local and central machines to estimate the optimal structure. We establish its convergence to a global optimizer of the overall score that is computed on all data across local machines. To the best of our knowledge, DARLS is the first distributed method for learning causal graphs with such theoretical guarantees. Through extensive simulation studies, DARLS has shown competing performance against existing methods on distributed data, and achieved comparable structure learning accuracy and test-data likelihood with competing methods applied to pooled data across all local machines. In a real-world application for modeling protein-DNA binding networks with distributed ChIP-Sequencing data, DARLS also exhibits higher predictive power than other methods, demonstrating a great advantage in estimating causal networks from distributed data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源