论文标题
PVCNN:隐私和可验证的卷积神经网络测试
pvCNN: Privacy-Preserving and Verifiable Convolutional Neural Network Testing
论文作者
论文摘要
本文提出了一种新的方法,用于保护隐私和可验证的卷积神经网络(CNN)测试,使CNN模型开发人员能够通过来自多个测试人员的非公开数据来说服用户,同时尊重模型隐私。为了平衡安全性和效率问题,通过适当整合同型加密(HE)和零知识简洁的知识非交互论点(ZK-SNARK)原始人与CNN测试来实现三项新的努力。首先,将要测试的CNN模型在战略上被策略性地分配到模型开发人员本地保存的私有部件中,并将公共部件外包给外部服务器。然后,私有部件通过测试仪发送的HE保护测试数据运行,并将其输出传输到公共部件,以完成CNN测试的后续计算。其次,上述CNN测试的正确性是通过生成基于ZK-SNARK的证据来实现的,重点是优化二维(2-D)卷积操作的证明开销,因为该操作在生成证明过程中主导了性能瓶颈。我们特别提出了一个新的二次矩阵程序(QMPS)基于单个乘法门,用于以批处理方式在多个过滤器和输入之间表达2-D卷积操作。第三,我们将相同的CNN模型的多个证据汇总到一个证明中,但不同的测试人员的测试数据(即不同的语句)将其汇总为一个证明,并确保汇总证明的有效性意味着原始多个证据的有效性。最后,我们的实验结果表明,我们的基于QMPS的ZK-SNARK在证明时间中的ZK-SNARK的性能比现有的基于QAPS的ZK-SNARK的速度快13.9 $ \ times $,在设置时间中,我们的设置时间更快为17.6 $ \ times $,对于高dimension矩阵乘法。
This paper proposes a new approach for privacy-preserving and verifiable convolutional neural network (CNN) testing, enabling a CNN model developer to convince a user of the truthful CNN performance over non-public data from multiple testers, while respecting model privacy. To balance the security and efficiency issues, three new efforts are done by appropriately integrating homomorphic encryption (HE) and zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK) primitives with the CNN testing. First, a CNN model to be tested is strategically partitioned into a private part kept locally by the model developer, and a public part outsourced to an outside server. Then, the private part runs over HE-protected test data sent by a tester and transmits its outputs to the public part for accomplishing subsequent computations of the CNN testing. Second, the correctness of the above CNN testing is enforced by generating zk-SNARK based proofs, with an emphasis on optimizing proving overhead for two-dimensional (2-D) convolution operations, since the operations dominate the performance bottleneck during generating proofs. We specifically present a new quadratic matrix programs (QMPs)-based arithmetic circuit with a single multiplication gate for expressing 2-D convolution operations between multiple filters and inputs in a batch manner. Third, we aggregate multiple proofs with respect to a same CNN model but different testers' test data (i.e., different statements) into one proof, and ensure that the validity of the aggregated proof implies the validity of the original multiple proofs. Lastly, our experimental results demonstrate that our QMPs-based zk-SNARK performs nearly 13.9$\times$faster than the existing QAPs-based zk-SNARK in proving time, and 17.6$\times$faster in Setup time, for high-dimension matrix multiplication.