论文标题

巩固边缘主义和平等主义:可转让公用游戏的新价值

Consolidating Marginalism and Egalitarianism: A New Value for Transferable Utility Games

论文作者

Choudhury, D., Borkotokey, S., Kumar, Rajnish, Sarangi, Sudipta

论文摘要

在具有可转让公用事业的合作游戏中,沙普利的价值是边缘主义的极端情况,而平等的统治是平等主义的极端情况。 Shapley的价值不会为非生产者分配任何内容,而平等的除法规则并不关心玩家在生成资源中的相对效率。但是,在现实生活中,他们俩都不适合公平的资源分配,因为社会既没有团结,也不是对奖励相对生产力更高的参与者无动于衷。因此,这两个极端案件之间的权衡引起了许多研究人员的关注。在本文中,我们获得了具有可转让公用事业的合作游戏的新价值,一方面,一方面在较小的联盟中采用平均值,另一方面,在足够大的联盟中照顾了玩家的边际生产力。我们的价值与沙普利价值相同,在一个极端上是另一个极端的平等分裂规则。我们使用文献中标准公理的变体提供了四个表征。我们还开发了一种在子游戏完美纳什均衡中的战略实施机制。

In cooperative games with transferable utilities, the Shapley value is an extreme case of marginalism while the Equal Division rule is an extreme case of egalitarianism. The Shapley value does not assign anything to the non-productive players and the Equal Division rule does not concern itself to the relative efficiency of the players in generating a resource. However, in real life situations neither of them is a good fit for the fair distribution of resources as the society is neither devoid of solidarity nor it can be indifferent to rewarding the relatively more productive players. Thus a trade-off between these two extreme cases has caught attention from many researchers. In this paper, we obtain a new value for cooperative games with transferable utilities that adopts egalitarianism in smaller coalitions on one hand and on the other hand takes care of the players' marginal productivity in sufficiently large coalitions. Our value is identical with the Shapley value on one extreme and the Equal Division rule on the other extreme. We provide four characterizations of the value using variants of standard axioms in the literature. We have also developed a strategic implementation mechanism of our value in sub-game perfect Nash equilibrium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源