论文标题

可控文本生成的因果镜头

A Causal Lens for Controllable Text Generation

论文作者

Hu, Zhiting, Li, Li Erran

论文摘要

可控的文本生成涉及两个广泛应用程序的基本任务,即生成给定属性的文本(即属性条件生成),以及最少编辑的现有文本以具有所需的属性(即文本属性传输)。大量的先前工作在很大程度上分别研究了这两个问题,并开发了不同的条件模型,但是,这些模型容易产生有偏见的文本(例如,各种性别刻板印象)。本文提议从原则上的因果角度制定可控制的文本生成,该角度将两个任务用统一的框架建模。因果公式的直接优势是使用丰富的因果关系工具来减轻产生偏见并改善控制。我们分别将这两个任务视为基于结构因果模型的介入和反事实因果推断。然后,我们将框架应用于具有挑战性的实践环境,在这种情况下,仅在一小部分数据上观察到混杂因素(引起虚假相关性)才能观察到。实验表明,因果方法比以前的条件模型具有显着优越性,以提高控制精度和降低偏差。

Controllable text generation concerns two fundamental tasks of wide applications, namely generating text of given attributes (i.e., attribute-conditional generation), and minimally editing existing text to possess desired attributes (i.e., text attribute transfer). Extensive prior work has largely studied the two problems separately, and developed different conditional models which, however, are prone to producing biased text (e.g., various gender stereotypes). This paper proposes to formulate controllable text generation from a principled causal perspective which models the two tasks with a unified framework. A direct advantage of the causal formulation is the use of rich causality tools to mitigate generation biases and improve control. We treat the two tasks as interventional and counterfactual causal inference based on a structural causal model, respectively. We then apply the framework to the challenging practical setting where confounding factors (that induce spurious correlations) are observable only on a small fraction of data. Experiments show significant superiority of the causal approach over previous conditional models for improved control accuracy and reduced bias.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源