论文标题

分布式联合通信和计算资源分配的多代理强化学习,不含单元的大型MIMO的移动边缘计算网络

Multi-Agent Reinforcement Learning for Distributed Joint Communication and Computing Resource Allocation over Cell-Free Massive MIMO-enabled Mobile Edge Computing Network

论文作者

Tilahun, Fitsum Debebe, Abebe, Ameha Tsegaye, Kang, Chung G.

论文摘要

为了支持具有超低延迟和广泛计算要求的新引入的多媒体服务,应利用网络边缘可用的无处不在的计算资源来增强使用边缘计算的板载(本地)处理。在这方面,可以通过保证无缝平行处理的无细胞边缘的均匀服务质量来提供无细胞的访问链接的能力提供可靠的访问链接。考虑到这一点,我们考虑了一个无单元的大型MIMO移动边缘网络,以满足高级服务的严格要求。对于所考虑的移动边缘网络,我们制定了一个联合通信和计算资源分配(JCCRA)问题,目的是在满足严格的延迟约束的同时最大程度地降低用户的能耗。然后,我们提出了一种基于多基因深层确定性政策梯度(MADDPG)算法的完全分布的合作解决方案方法。仿真结果表明,所提出的分布式方法的性能已融合到基于集中的深层确定性策略梯度(DDPG)基于目标基准的基准,同时减轻了与后者相关的大开销。此外,已经表明,我们的方法在能源效率方面显着优于启发式基线,大约减少了总能源消耗的5倍。

To support the newly introduced multimedia services with ultra-low latency and extensive computation requirements, resource-constrained end user devices should utilize the ubiquitous computing resources available at network edge for augmenting on-board (local) processing with edge computing. In this regard, the capability of cell-free massive MIMO to provide reliable access links by guaranteeing uniform quality of service without cell edge can be exploited for seamless parallel processing. Taking this into account, we consider a cell-free massive MIMO-enabled mobile edge network to meet the stringent requirements of the advanced services. For the considered mobile edge network, we formulate a joint communication and computing resource allocation (JCCRA) problem with the objective of minimizing energy consumption of the users while meeting the tight delay constraints. We then propose a fully distributed cooperative solution approach based on multiagent deep deterministic policy gradient (MADDPG) algorithm. The simulation results demonstrate that the performance of the proposed distributed approach has converged to that of a centralized deep deterministic policy gradient (DDPG)-based target benchmark, while alleviating the large overhead associated with the latter. Furthermore, it has been shown that our approach significantly outperforms heuristic baselines in terms of energy efficiency, roughly up to 5 times less total energy consumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源