论文标题
多核量子计算
Multicore Quantum Computing
论文作者
论文摘要
任何用于实用量子计算的架构都必须可扩展。一种有吸引力的方法是创建多个核心,即固定尺寸的计算区域,这些区域间隔良好,但与通信渠道相互联系。这种爆炸的结构可以放松与单个单片设备相关的需求:控制,冷却和功率基础架构的复杂性以及跨言式抑制和接近完美的组件产量的困难。在这里,我们通过分析和数值建模探索了相互联系的多核体系结构。尽管我们的分析元素与不同的平台有关,但我们的重点是半导体电子自旋系统,其中单个芯片上可能存在许多核心。我们对穿梭和微波的互链链路进行建模,并估计可实现的保真度,发现令人鼓舞但显着不如核心内部操作的值。因此,我们引入了最佳的纠缠净化以实现高保真沟通,发现$ 99.5 \%$是一个非常现实的目标。然后,我们使用NISQ时代及以后的此类设备评估量子优势的前景:我们模拟了最近提出的多核环境中提出的指数误差缓解方案,并得出结论,这些技术在核心内部和核心内部操作中都具有令人印象深刻的抑制。
Any architecture for practical quantum computing must be scalable. An attractive approach is to create multiple cores, computing regions of fixed size that are well-spaced but interlinked with communication channels. This exploded architecture can relax the demands associated with a single monolithic device: the complexity of control, cooling and power infrastructure as well as the difficulties of cross-talk suppression and near-perfect component yield. Here we explore interlinked multicore architectures through analytic and numerical modelling. While elements of our analysis are relevant to diverse platforms, our focus is on semiconductor electron spin systems in which numerous cores may exist on a single chip. We model shuttling and microwave-based interlinks and estimate the achievable fidelities, finding values that are encouraging but markedly inferior to intra-core operations. We therefore introduce optimsed entanglement purification to enable high-fidelity communication, finding that $99.5\%$ is a very realistic goal. We then assess the prospects for quantum advantage using such devices in the NISQ-era and beyond: we simulate recently proposed exponentially-powerful error mitigation schemes in the multicore environment and conclude that these techniques impressively suppress imperfections in both the inter- and intra-core operations.