论文标题

FedComm:联合学习作为秘密交流的媒介

FedComm: Federated Learning as a Medium for Covert Communication

论文作者

Hitaj, Dorjan, Pagnotta, Giulio, Hitaj, Briland, Perez-Cruz, Fernando, Mancini, Luigi V.

论文摘要

提议作为减轻与采用深度学习有关的隐私影响的解决方案,联合学习(FL)使大量参与者能够成功训练深层神经网络,而无需透露实际的私人培训数据。迄今为止,大量研究调查了FL的安全性和隐私权,从而导致了大量创新的攻击和防御策略。本文彻底研究了FL计划的通信能力。特别是,我们表明,参与FL学习过程的一方可以使用FL作为秘密交流媒介来发送任意信息。我们介绍了FedComm,这是一种新颖的多系统秘密通信技术,可在FL框架内强大的共享和转移目标有效载荷。我们广泛的理论和经验评估表明,FedComm提供了一个隐形的交流渠道,对培训过程的中断最小。我们的实验表明,FedComm在FL程序收敛之前成功地以千射线的顺序成功提供了有效载荷的100%。我们的评估还表明,FedComm独立于应用域和基础FL方案使用的神经网络体系结构。

Proposed as a solution to mitigate the privacy implications related to the adoption of deep learning, Federated Learning (FL) enables large numbers of participants to successfully train deep neural networks without having to reveal the actual private training data. To date, a substantial amount of research has investigated the security and privacy properties of FL, resulting in a plethora of innovative attack and defense strategies. This paper thoroughly investigates the communication capabilities of an FL scheme. In particular, we show that a party involved in the FL learning process can use FL as a covert communication medium to send an arbitrary message. We introduce FedComm, a novel multi-system covert-communication technique that enables robust sharing and transfer of targeted payloads within the FL framework. Our extensive theoretical and empirical evaluations show that FedComm provides a stealthy communication channel, with minimal disruptions to the training process. Our experiments show that FedComm successfully delivers 100% of a payload in the order of kilobits before the FL procedure converges. Our evaluation also shows that FedComm is independent of the application domain and the neural network architecture used by the underlying FL scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源