论文标题

对比和选择性隐藏的医学图像分割的隐藏嵌入

Contrastive and Selective Hidden Embeddings for Medical Image Segmentation

论文作者

Li, Zhuowei, Liu, Zihao, Hu, Zhiqiang, Xia, Qing, Xiong, Ruiqin, Zhang, Shaoting, Metaxas, Dimitris, Jiang, Tingting

论文摘要

医疗图像分割已被广泛认为是用于临床诊断,分析和治疗计划的枢轴程序。但是,费力且昂贵的注释过程降低了进一步的进步速度。基于对比的基于学习的重量预训练通过利用未标记的数据来学习良好的表示,为替代提供了替代方案。在本文中,我们研究了对比度学习如何使一般监督的医学细分任务受益。为此,提出了斑块式的对比正则化(PDCR),以执行补丁级的拉伸和排斥,并由连续亲和力得分控制的程度。一个新的结构被称为不确定性吸引特征选择块(UAFS)旨在执行特征选择过程,该过程可以处理由少数族裔特征引起的学习目标变化,这是高度不确定性的。通过将提出的2个模块插入现有的分割体系结构,我们可以在来自6个域的8个公共数据集中实现最新结果。新设计的模块将培训数据的数量进一步降低到四分之一,同时取得可比性(即使不是更好的表现)。从这个角度来看,我们通过在标签中包含的进一步挖掘信息来朝着原始的自我/无监督对比学习的相反方向。

Medical image segmentation has been widely recognized as a pivot procedure for clinical diagnosis, analysis, and treatment planning. However, the laborious and expensive annotation process lags down the speed of further advances. Contrastive learning-based weight pre-training provides an alternative by leveraging unlabeled data to learn a good representation. In this paper, we investigate how contrastive learning benefits the general supervised medical segmentation tasks. To this end, patch-dragsaw contrastive regularization (PDCR) is proposed to perform patch-level tugging and repulsing with the extent controlled by a continuous affinity score. And a new structure dubbed uncertainty-aware feature selection block (UAFS) is designed to perform the feature selection process, which can handle the learning target shift caused by minority features with high uncertainty. By plugging the proposed 2 modules into the existing segmentation architecture, we achieve state-of-the-art results across 8 public datasets from 6 domains. Newly designed modules further decrease the amount of training data to a quarter while achieving comparable, if not better, performances. From this perspective, we take the opposite direction of the original self/un-supervised contrastive learning by further excavating information contained within the label.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源