论文标题
在Riemann $ξ$ - 功能的对数衍生物的真实部分的积极属性上
On a positivity property of the real part of logarithmic derivative of the Riemann $ξ$-function
论文作者
论文摘要
在本文中,我们调查了Riemann $ξ$ - 功能的对数衍生物的真实部分的积极属性,价格为$ 1/2 <σ<1 $和足够大的$ t $。我们给出了$ \ re \sum_ρ1/(s-ρ)$的显式上和下限,其中总和在行$ 1/2+it $上的$ζ(s)$上的零以上运行。我们还以$ 1/2 <σ<1 $的价格检查了$ \ re耳/ξ(s)$的阳性,假设存在$ζ(s)$的非平凡零。
In this paper we investigate the positivity property of the real part of logarithmic derivative of the Riemann $ξ$-function for $1/2<σ<1$ and sufficiently large $t$. We give an explicit upper and lower bounds for $\Re\sum_ρ 1/(s-ρ)$, where the sum runs over the zeros of $ζ(s)$ on the line $1/2+it$. We also check the positivity of $\Re ξ'/ξ(s)$ for $1/2<σ<1$ assuming that there occur a non-trivial zeros of $ζ(s)$ off the critical line.