论文标题

使用图形超网的联合学习与异质体系结构

Federated Learning with Heterogeneous Architectures using Graph HyperNetworks

论文作者

Litany, Or, Maron, Haggai, Acuna, David, Kautz, Jan, Chechik, Gal, Fidler, Sanja

论文摘要

标准联合学习(FL)技术仅限于具有相同网络体系结构的客户。当需要数据隐私和建筑专有人类时,这限制了跨平台培训或组织间协作等潜在用例。我们提出了一个新的FL框架,该框架通过采用图形超网络进行参数共享来适应异构客户端体系结构。图形超网络的属性是它可以适应各种计算图,从而允许跨模型共享有意义的参数共享。与现有解决方案不同,我们的框架并不限制客户端共享相同的体系结构类型,不使用外部数据,也不要求客户端披露其模型体系结构。与基于蒸馏的和非编号的超网络基准相比,我们的方法在标准基准上的性能明显更好。我们还展示了令人鼓舞的概括性能,以表现出看不见的体系结构。

Standard Federated Learning (FL) techniques are limited to clients with identical network architectures. This restricts potential use-cases like cross-platform training or inter-organizational collaboration when both data privacy and architectural proprietary are required. We propose a new FL framework that accommodates heterogeneous client architecture by adopting a graph hypernetwork for parameter sharing. A property of the graph hyper network is that it can adapt to various computational graphs, thereby allowing meaningful parameter sharing across models. Unlike existing solutions, our framework does not limit the clients to share the same architecture type, makes no use of external data and does not require clients to disclose their model architecture. Compared with distillation-based and non-graph hypernetwork baselines, our method performs notably better on standard benchmarks. We additionally show encouraging generalization performance to unseen architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源