论文标题

一维量子系统具有jastrow形式的地面状态

One-Dimensional Quantum Systems with Ground-State of Jastrow Form Are Integrable

论文作者

Yang, Jing, del Campo, Adolfo

论文摘要

交换运算符形式主义(EOF)使用涉及任何对任何一对粒子的交换运算符的相位变量描述了多体积分系统。我们建立了由EOF描述的模型与完整的无限汉密尔顿家族(PHJ)的模型,描述了具有Jastrow形式地面状态的量子多体模型。这使得即使在存在外部电位的情况下,也可以确定PHJ家族中任何模型的运动不变性,并确定其整合性。使用这种结构,我们建立了远程Lieb-Liniger模型的整合性,描述了谐波陷阱中的玻色子,并在一个维度上进行接触和库仑相互作用。我们给出了各种例子,说明了汉密尔顿人在这个家庭中的整合性。

The exchange operator formalism (EOF) describes many-body integrable systems using phase-space variables involving an exchange operator that acts on any pair of particles. We establish an equivalence between models described by EOF and the complete infinite family of parent Hamiltonians (PHJ) describing quantum many-body models with ground-states of Jastrow form. This makes it possible to identify the invariants of motion for any model in the PHJ family and establish its integrability, even in the presence of an external potential. Using this construction we establish the integrability of the long-range Lieb-Liniger model, describing bosons in a harmonic trap and subject to contact and Coulomb interactions in one dimension. We give a variety of examples exemplifying the integrability of Hamiltonians in this family.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源