论文标题

短暂的数据得出的潜力,用于随机结构搜索

Ephemeral data derived potentials for random structure search

论文作者

Pickard, Chris J.

论文摘要

结构预测已成为现代原子科学的关键任务,并取决于能量景观的快速可靠计算。第一原理密度基于功能的计算是高度可靠的,忠实地描述了整个能源景观。但是,与原子间电位相比,它们在计算密集程度上且缓慢。在机器学习或派生的数据潜力的开发中取得了巨大进展,这有望描述首先原理质量的整个能源格局。但是,与第一原则方法相比,他们的准备工作可能是耗时的,并且延迟搜索。从头开始搜索(AIRSS)是基于随机生成明智的初始结构及其重复的局部优化的简单明了的结构预测方法。在这里,描述了一种与AIRSS兼容的方案,以快速构建一次性或短暂的数据衍生电势(EDDP)。这些电势是使用均匀的,可分离的许多体矢量以及迭代神经网络拟合的构建的,这些效果通过非负最小二乘正方形而稀少。该方法首先在甲烷,硝酸硼,元素硼和尿素上进行测试。在硼的情况下,使用来自小型单元细胞的数据生成的EDDP用于重新发现复杂的$γ$ - 硼孔结构,而无需求助于对称性或片段。最后,在500 GPA时为Silane(SIH $ _4 $)生成的EDDP使发现非常复杂,密集的结构,可显着修改Silane的高压相图。这对理论探索对高温氢化物中的高温超导性有影响,迄今为止,这在很大程度上取决于在较小的单位细胞中的搜索。

Structure prediction has become a key task of the modern atomistic sciences, and depends on the rapid and reliable computation of the energy landscape. First principles density functional based calculations are highly reliable, faithfully describing the entire energy landscape. They are, however, computationally intensive and slow compared to interatomic potentials. Great progress has been made in the development of machine learning, or data derived, potentials, which promise to describe the entire energy landscape at first principles quality. However, compared to first principles approaches, their preparation can be time consuming and delay searching. Ab initio random structure searching (AIRSS) is a straightforward and powerful approach to structure prediction, based on the stochastic generation of sensible initial structures, and their repeated local optimisation. Here, a scheme, compatible with AIRSS, for the rapid construction of disposable, or ephemeral, data derived potentials (EDDPs) is described. These potentials are constructed using a homogeneous, separable manybody environment vector, and iterative neural network fits, sparsely combined through non-negative least squares. The approach is first tested on methane, boron nitride, elemental boron and urea. In the case of boron, an EDDP generated using data from small unit cells is used to rediscover the complex $γ$-boron structure without recourse to symmetry or fragments. Finally, an EDDP generated for silane (SiH$_4$) at 500 GPa enables the discovery of an extremely complex, dense, structure which significantly modifies silane's high pressure phase diagram. This has implications for the theoretical exploration for high temperature superconductivity in the dense hydrides, which have so far largely depended on searches in smaller unit cells.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源