论文标题
功能近似的一般方法
General approach to function approximation
论文作者
论文摘要
具有功能$ f $和一组函数$ \ {\ MATHCAL {C} _ {n} \} $,$ C_N^f \ equiv \ equiv \ equiv \ Mathcal {c} _n _n \ left(f \ weled(f \ right)$通常可以将功能近似为某些函数$ \ nath $ \ nath $ \ mathcal} an} $ c_n^f = \ mathcal {c} _n \ left(\ mathcal {a} _n^f \ right)$。所有已知的近似值都可以通过这种方式来解释,我们会审查其中的一些近似值。此外,我们构建了几种新的扩展类型,包括三个有理近似值。
Having a function $f$ and a set of functionals $\{\mathcal{C}_{n}\}$, $c_n^f \equiv \mathcal{C}_n \left(f\right)$, one can interpret function approximation very generally as a construction of some function $\mathcal{A}_{N}^{f}$ such that $c_n^f = \mathcal{C}_n \left(\mathcal{A}_N^f \right)$. All known approximations can be interpreted in this way and we review some of them. In addition, we construct several new expansion types including three rational approximations.