论文标题

人脑语音处理的空间规模维度

The spatial scale dimension of speech processing in the human brain

论文作者

Kellmeyer, Philipp, Berkemeier, Roland, Ball, Tonio

论文摘要

在过去的三十年中,神经影像学为人脑的结构功能关系提供了重要的见解。然而,最近,分析功能磁共振成像(fMRI)数据的方法受到了审查,研究质疑跨软件可比性,统计推断和解释的有效性以及空间滤波器大小对神经影像学分析的影响。由于大多数fMRI研究仅使用单个过滤器进行分析,因此高斯尺度空间中粗体信号的大小和形状的大量信息仍然隐藏起来,并限制了fMRI研究的解释。为了研究空间观察量表对fMRI分析的影响,我们使用空间多尺度分析,其中一系列高斯滤波器从1-20 mm(最大宽度全宽度)来分析25名健康受试者语音重复范式的fMRI数据。我们表明,分析一系列高斯滤波器内核的fMRI数据揭示了神经解剖学定位的实质性差异,以及取决于滤波器大小的上空库群的平均信号强度和大小。我们还证明了小空间过滤如何偏向于皮层和小脑簇的结果。此外,我们描述了皮质和小脑簇之间的规模依赖性聚类大小动力学。我们讨论空间多尺度分析如何显着改善fMRI数据的解释。我们建议进一步开发空间多尺度分析,以充分探索高斯尺度空间中粗体信号的深层结构。

In the past three decades, neuroimaging has provided important insights into structure-function relationships in the human brain. Recently, however, the methods for analyzing functional magnetic resonance imaging (fMRI) data have come under scrutiny, with studies questioning cross-software comparability, the validity of statistical inference and interpretation, and the influence of the spatial filter size on neuroimaging analyses. As most fMRI studies only use a single filter for analysis, much information on the size and shape of the BOLD signal in Gaussian scale space remains hidden and constrains the interpretation of fMRI studies. To investigate the influence of the spatial observation scale on fMRI analysis, we use a spatial multiscale analysis with a range of Gaussian filters from 1-20 mm (full width at half maximum) to analyze fMRI data from a speech repetition paradigm in 25 healthy subjects. We show that analyzing the fMRI data over a range of Gaussian filter kernels reveals substantial variability in the neuroanatomical localization and the average signal strength and size of suprathreshold clusters depending on the filter size. We also demonstrate how small spatial filters bias the results towards subcortical and cerebellar clusters. Furthermore, we describe substantially different scale-dependent cluster size dynamics between cortical and cerebellar clusters. We discuss how spatial multiscale analysis may substantially improve the interpretation of fMRI data. We propose to further develop a spatial multiscale analysis to fully explore the deep structure of the BOLD signal in Gaussian scale space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源