论文标题
POPPINS:一种基于人群的数字尖峰神经形态处理器,具有整数二次集成和开火神经元
POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with Integer Quadratic Integrate-and-Fire Neurons
论文作者
论文摘要
人脑作为生物加工系统的内部操作在很大程度上仍然是一个谜。受人脑功能的启发,并基于对其他物种中简单神经网络系统的分析,例如果蝇,神经形态计算系统引起了人们的极大兴趣。在细胞级连接组研究中,我们可以识别称为人群的生物神经网络的特征,它不仅构成了网络中反复的全面连接,而且还构成了每个神经元中的外部刺激和自我连接。依靠网络和输入数据中尖峰传输的低数据带宽,尖峰神经网络表现出低延迟和低功率设计。在这项研究中,我们提出了一个可配置的基于人群的数字尖峰神经形态处理器,该处理器在180nm工艺技术中具有两个可配置的层次结构。同样,处理器中的这些神经元可以被配置为新型模型,即整数二次集成和开火神经元模型,该模型包含未签名的8位膜电位值。处理器可以实时实施智能决策,以实时避免。此外,所提出的方法可以使仿生神经形态系统以及各种低功率和低延迟推理处理应用的发展。
The inner operations of the human brain as a biological processing system remain largely a mystery. Inspired by the function of the human brain and based on the analysis of simple neural network systems in other species, such as Drosophila, neuromorphic computing systems have attracted considerable interest. In cellular-level connectomics research, we can identify the characteristics of biological neural network, called population, which constitute not only recurrent fullyconnection in network, also an external-stimulus and selfconnection in each neuron. Relying on low data bandwidth of spike transmission in network and input data, Spiking Neural Networks exhibit low-latency and low-power design. In this study, we proposed a configurable population-based digital spiking neuromorphic processor in 180nm process technology with two configurable hierarchy populations. Also, these neurons in the processor can be configured as novel models, integer quadratic integrate-and-fire neuron models, which contain an unsigned 8-bit membrane potential value. The processor can implement intelligent decision making for avoidance in real-time. Moreover, the proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.