论文标题

具有现实状态方程式的行星积聚冲击

Planetary Accretion Shocks with a Realistic Equation of State

论文作者

Chen, Zhuo, Bai, Xue-Ning

论文摘要

天然气巨型形成的最后阶段涉及从母体原球磁盘中积聚气体。通常,输入的气体可能接近自由下落的速度,从而产生积聚冲击,从而导致强烈的冲击加热和辐射。我们使用1D辐射流体动力学模拟研究了这种吸积冲击的运动学和能量学。我们的模拟是对氢解离和电离,辐射传输和逼真的灰色不透明度的首次自洽处理。 By exploring a broad range of giant planet masses (0.1-3 M$_{J}$) and accretion rates ($10^{-3}$-$10^{-2}$M$_{\oplus}\cdot\rm{yr}^{-1}$), we focus on global shock efficiency and the final entropy of the accreted gas.我们发现,当减震气体的辐射辐射可以完全拆分传入气体的分子氢,而当电击光度高于临界光度之上。 Meanwhile, the post-shock entropy generally fall into "cold" ($<12k_{\rm{B}}/m_{\rm H}$) and "hot" ($>16k_{\rm{B}}/m_{\rm H}$) groups which depends on the extent of the endothermic process of $ \ rm {h} _2 $解离。虽然需要2D或3D模拟才能对积聚过程进行更现实的理解,但这种区别可能会延续并阐明了对年轻直接成像行星的解释。

The final stage of gas giant formation involves accreting gas from the parent protoplanetary disk. In general, the infalling gas likely approaches a free-fall velocity, creating an accretion shock, leading to strong shock heating and radiation. We investigate the kinematics and energetics of such accretion shocks using 1D radiation hydrodynamic simulations. Our simulations feature the first self-consistent treatment of hydrogen dissociation and ionization, radiation transport, and realistic grey opacity. By exploring a broad range of giant planet masses (0.1-3 M$_{J}$) and accretion rates ($10^{-3}$-$10^{-2}$M$_{\oplus}\cdot\rm{yr}^{-1}$), we focus on global shock efficiency and the final entropy of the accreted gas. We find that radiation from the accretion shock can fully disassociate the molecular hydrogen of the incoming gas when the shock luminosity is above a critical luminosity. Meanwhile, the post-shock entropy generally fall into "cold" ($<12k_{\rm{B}}/m_{\rm H}$) and "hot" ($>16k_{\rm{B}}/m_{\rm H}$) groups which depends on the extent of the endothermic process of $\rm{H}_2$ dissociation. While 2D or 3D simulations are needed for more realistic understandings of the accretion process, this distinction likely carries over and sheds light on the interpretation of young direct imaging planets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源