论文标题

可逆的可逆MR线圈压缩网络可变的增强网络

Variable Augmented Network for Invertible MR Coil Compression

论文作者

Liao, Xianghao, Wang, Shanshan, Tu, Lanlan, Wang, Yuhao, Liang, Dong, Liu, Qiegen

论文摘要

大量线圈能够提供增强的信噪比,并在并行成像中提高成像性能。然而,线圈数的增长同时加剧了数据存储和重建速度的缺点,尤其是在某些迭代重建中。线圈压缩通过生成更少的虚拟线圈来解决这些问题。在这项工作中,提出了一个新型的变量增强网络,用于可逆线圈压缩所谓的VAN-ICC。它利用将基于流量的模型归一化的固有可逆性进行高精度压缩和可逆恢复。通过使用可逆性和行李功能,通过使用可变型训练可逆网络来形象/k空间变量来图像/k空间变量,可以将原始数据映射到压缩的对应物,而反之亦然。对完全采样和采样不采样的数据进行的实验验证了VAN-ICC的有效性和灵活性。与传统的基于非深度学习的方法进行定量和定性比较表明,VAN-ICC可以带来更高的压缩效应。此外,其性能不容易受到不同数量的虚拟线圈的影响。

A large number of coils are able to provide enhanced signal-to-noise ratio and improve imaging performance in parallel imaging. Nevertheless, the increasing growth of coil number simultaneously aggravates the drawbacks of data storage and reconstruction speed, especially in some iterative reconstructions. Coil compression addresses these issues by generating fewer virtual coils. In this work, a novel variable augmentation network for invertible coil compression termed VAN-ICC is presented. It utilizes inherent reversibility of normalizing flow-based models for high-precision compression and invertible recovery. By employing the variable augmentation technology to image/k-space variables from multi-coils, VAN-ICC trains invertible networks by finding an invertible and bijective function, which can map the original data to the compressed counterpart and vice versa. Experiments conducted on both fully-sampled and under-sampled data verified the effectiveness and flexibility of VAN-ICC. Quantitative and qualitative comparisons with traditional non-deep learning-based approaches demonstrated that VAN-ICC can carry much higher compression effects. Additionally, its performance is not susceptible to different number of virtual coils.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源