论文标题
k在表面上的Hilbert方案的k理论下降系列
K-Theoretic Descendent Series for Hilbert Schemes of Points on Surfaces
论文作者
论文摘要
我们研究了表面上的Hilbert方案上的重言式束带的全体形态欧拉(Euler)特征。特别是,我们建立了K理论后代系列的合理性。我们的方法是控制仿射平面上的希尔伯特方案的塑形欧拉的特征。为此,我们稍微修改了Mellit的MacDonald多项式身份。
We study the holomorphic Euler characteristics of tautological sheaves on Hilbert schemes of points on surfaces. In particular, we establish the rationality of K-theoretic descendent series. Our approach is to control equivariant holomorphic Euler characteristics over the Hilbert scheme of points on the affine plane. To do so, we slightly modify a Macdonald polynomial identity of Mellit.