论文标题

fmm-lu:三个维度的多尺度边界积分方程的快速直接求解器

FMM-LU: A fast direct solver for multiscale boundary integral equations in three dimensions

论文作者

Sushnikova, Daria, Greengard, Leslie, O'Neil, Michael, Rachh, Manas

论文摘要

我们使用最近引入的递归强骨架方案的扩展为在三个维度上的复杂表面上的边界积分方程提出了一个快速的直接求解器。对于不高度振荡的问题,我们的算法计算了$ {lu} $ - 像密度系统矩阵的层次分解,允许将逆应用在$ \ Mathcal o(n)$时间中,其中$ n $是表面上未知数的数量。分解本身还与系统大小线性缩放,尽管常数较大。该方案建立在限制级别的自适应OCTREE数据结构上,因此与高度不均匀的离散化兼容。此外,该方案与高阶精确局部校正的NyStröm正交方法结合在一起,以整合整体表示中使用的奇异和弱绿色功能。我们的方法在计算物理学中立即应用了各种问题。我们在这里集中精力研究其在低至中度频率下的声学散射(由Helmholtz方程)中的表现,并通过代理表面提供了严格的理由来压缩一层。

We present a fast direct solver for boundary integral equations on complex surfaces in three dimensions using an extension of the recently introduced recursive strong skeletonization scheme. For problems that are not highly oscillatory, our algorithm computes an ${LU}$-like hierarchical factorization of the dense system matrix, permitting application of the inverse in $\mathcal O(n)$ time, where $n$ is the number of unknowns on the surface. The factorization itself also scales linearly with the system size, albeit with a somewhat larger constant. The scheme is built on a level-restricted adaptive octree data structure, and therefore it is compatible with highly nonuniform discretizations. Furthermore, the scheme is coupled with high-order accurate locally-corrected Nyström quadrature methods to integrate the singular and weakly-singular Green's functions used in the integral representations. Our method has immediate applications to a variety of problems in computational physics. We concentrate here on studying its performance in acoustic scattering (governed by the Helmholtz equation) at low to moderate frequencies, and provide rigorous justification for compression of submatrices via proxy surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源