论文标题
热模式积聚和薄盘星系形成物理
Hot-mode accretion and the physics of thin-disk galaxy formation
论文作者
论文摘要
我们使用火灾模拟在Z〜0(Mirky Way-Mas质量星系)中研究磁盘形成,并得出结论,形成薄恒星磁盘的关键要素是能够通过内部取消来增强气体来形成对齐的角动量分布 *先验 *加入星系。在薄磁盘(h/r〜0.1)中,其年轻恒星中较高的星系(> 70%)中,我们发现:(i)热,病毒 - 温度的气体在光晕尺度(> 20 kpc)上占主导地位的流动气体质量,而受压缩加热的辐射损失损失了辐射损失; (ii)这种热积聚一直进行,直到角动量支撑降低了向内运动,此时气体冷却至t〜10^4 K或更少。 (iii)在冷却之前,积分气体会形成与星系盘对齐的角动量分布,并在冷却从准球形空间构型到更扁平的磁盘样构型时进行冷却过渡。我们表明,这种“旋转冷却流”吸积模式的存在与在17 Z〜0星系中形成的恒星形成的恒星的比例密切相关。值得注意的是,具有较厚磁盘或不规则形态的星系不会在积聚之前经历气体的显着角动量比对,并且在光环气体冷却和变平之间没有对应关系。我们的结果表明,旋转冷却流(或更一般而言,是旋转的亚音速流),它们在积聚到银河系之前会变得连贯且具有角动量支持,这可能是形成LambDACDM宇宙中薄的,恒星形成的磁盘星系的必要条件。
We use FIRE simulations to study disk formation in z~0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar disks is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation *prior* to joining the galaxy. Among galaxies with a high fraction (>70%) of their young stars in a thin disk (h/R~0.1) we find that: (i) hot, virial-temperature gas dominates the inflowing gas mass on halo scales (>~20 kpc), with radiative losses offset by compression heating; (ii) this hot accretion proceeds until angular momentum support slows inward motion, at which point the gas cools to T~10^4 K or less; (iii) prior to cooling, the accreting gas develops an angular momentum distribution that is aligned with the galaxy disk, and while cooling transitions from a quasi-spherical spatial configuration to a more flattened, disk-like configuration. We show that the existence of this "rotating cooling flow" accretion mode is strongly correlated with the fraction of stars forming in a thin disk among a sample of 17 z~0 galaxies spanning a halo mass range of 10^10.5 solar masses to 10^12 solar masses, or a stellar mass range 10^8 solar masses to 10^11 solar masses. Notably, galaxies with a thick disk or irregular morphology do not undergo significant angular momentum alignment of gas prior to accretion and show no correspondence between halo gas cooling and flattening. Our results suggest that rotating cooling flows (or, more generally, rotating subsonic flows) that become coherent and angular momentum-supported prior to accretion onto the galaxy are likely a necessary condition for the formation of thin, star-forming disk galaxies in a LambdaCDM universe.