论文标题
n-t-t-t-test内核近似在复制内核希尔伯特空间
n-Best Kernel Approximation in Reproducing Kernel Hilbert Spaces
论文作者
论文摘要
通过对全态函数的最大模量原理进行开创性,我们证明存在$ n $ best内核近似,用于单位光盘中全体形态函数的广泛复制的内核空间,以及用于固定型bochner类型空间的相应类型的bochner类型的类型过程。因此,这项研究概括了固定空间的$ n $ best理性近似的经典结果,以及最新的$ n $ best-bert-bert-bernel近似值,用于装置碟片的加权伯格曼空间。近似值的类型在信号和图像处理和系统识别以及经典和随机类型积分和微分方程的数值解中具有重要的应用。
By making a seminal use of the maximum modulus principle of holomorphic functions we prove existence of $n$-best kernel approximation for a wide class of reproducing kernel Hilbert spaces of holomorphic functions in the unit disc, and for the corresponding class of Bochner type spaces of stochastic processes. This study thus generalizes the classical result of $n$-best rational approximation for the Hardy space and a recent result of $n$-best kernel approximation for the weighted Bergman spaces of the unit disc. The type of approximations have significant applications to signal and image processing and system identification, as well as to numerical solutions of the classical and the stochastic type integral and differential equations.