论文标题
同型复合物的几乎复杂的结构投影空间
Almost Complex Structures on Homotopy Complex Projective Spaces
论文作者
论文摘要
我们表明,所有同型$ \ mathbb {c} p^n $ s,带有$ \ mathbb {c} p^n $的平滑封闭流形,以$ 3 \ leq n \ leq 6 $的价格接纳几乎复杂的结构,并通过其Chern类对这些结构进行分类。我们的方法为Libgober和Wood的结果提供了一个新的证明,该结果是在同型$ \ Mathbb {C} p^4 $ s上几乎复杂结构的分类。
We show that all homotopy $\mathbb{C}P^n$s, smooth closed manifolds with the oriented homotopy type of $\mathbb{C}P^n$, admit almost complex structures for $3 \leq n \leq 6$, and classify these structures by their Chern classes. Our methods provide a new proof of a result of Libgober and Wood on the classification of almost complex structures on homotopy $\mathbb{C}P^4$s.