论文标题

同型复合物的几乎复杂的结构投影空间

Almost Complex Structures on Homotopy Complex Projective Spaces

论文作者

Mills, Keith

论文摘要

我们表明,所有同型$ \ mathbb {c} p^n $ s,带有$ \ mathbb {c} p^n $的平滑封闭流形,以$ 3 \ leq n \ leq 6 $的价格接纳几乎复杂的结构,并通过其Chern类对这些结构进行分类。我们的方法为Libgober和Wood的结果提供了一个新的证明,该结果是在同型$ \ Mathbb {C} p^4 $ s上几乎复杂结构的分类。

We show that all homotopy $\mathbb{C}P^n$s, smooth closed manifolds with the oriented homotopy type of $\mathbb{C}P^n$, admit almost complex structures for $3 \leq n \leq 6$, and classify these structures by their Chern classes. Our methods provide a new proof of a result of Libgober and Wood on the classification of almost complex structures on homotopy $\mathbb{C}P^4$s.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源