论文标题
实例意识提示语言理解和产生的学习
Instance-aware Prompt Learning for Language Understanding and Generation
论文作者
论文摘要
最近,及时的学习已成为利用预训练的语言模型(PLM)的新范式,并在下游任务中实现了有希望的结果,而参数可以忽略不计。当前使用离散和连续提示的用法假定该提示是针对特定任务修复的,并且任务中的所有样本共享相同的提示。但是,一个任务可能包含相当多的样本,其中有些很容易,而另一些则很难,并且需要多样化的提示。在本文中,我们提出了一种实例感知的提示学习方法,该方法为每个实例学习了一个不同的提示。具体而言,我们假设每个可学习的提示令牌对不同实例都有不同的贡献,并且我们通过计算实例和每个提示令牌之间的相关性得分来了解贡献。加权提示将是实例的。我们将我们的方法应用于语言理解和发电任务上的单向和双向PLM。广泛的实验表明,与强基础相比,我们的方法获得了相当大的改进。尤其是,我们的方法实现了超级少量学习基准的最新方法。
Recently, prompt learning has become a new paradigm to utilize pre-trained language models (PLMs) and achieves promising results in downstream tasks with a negligible increase of parameters. The current usage of discrete and continuous prompts assumes that the prompt is fixed for a specific task and all samples in the task share the same prompt. However, a task may contain quite diverse samples in which some are easy and others are difficult, and diverse prompts are desirable. In this paper, we propose an instance-aware prompt learning method that learns a different prompt for each instance. Specifically, we suppose that each learnable prompt token has a different contribution to different instances, and we learn the contribution by calculating the relevance score between an instance and each prompt token. The contribution weighted prompt would be instance aware. We apply our method to both unidirectional and bidirectional PLMs on both language understanding and generation tasks. Extensive experiments demonstrate that our method obtains considerable improvements compared to strong baselines. Especially, our method achieves the state-of-the-art on the SuperGLUE few-shot learning benchmark.