论文标题

从异质和部分标记的图像数据集中的深层子宫颈模型开发

Deep Cervix Model Development from Heterogeneous and Partially Labeled Image Datasets

论文作者

Pal, Anabik, Xue, Zhiyun, Antani, Sameer

论文摘要

宫颈癌是全球女性第四大癌症。强大的自动宫颈图像分类系统的可用性可以增强临床护理提供商在传统视觉检查中使用乙酸的限制(VIA)。但是,有各种各样的宫颈检查目标影响标准特定预测模型开发的标签标准。此外,由于缺乏确认性测试结果和评估者间标记变化,许多图像被未标记。 在这些挑战的推动下,我们提出了一种基于自制的学习(SSL)方法,以从未标记的子宫颈图像中产生预训练的子宫颈模型。开发的模型进一步进行了微调,以使用可用标记的图像生成特定于标准的分类模型。我们使用两个宫颈图像数据集证明了提出方法的有效性。这两个数据集均部分标记,标记标准不同。实验结果表明,基于SSL的初始化提高了分类性能(准确性:2.5%),并且在SSL期间包含两个数据集的图像进一步提高了性能(准确性:1.5%min)。此外,考虑到数据共享限制,我们尝试了联合SSL的有效性,发现它可以改善仅使用其图像开发的SSL模型的性能。这证明了基于SSL的子宫颈模型开发的重要性。我们认为,本研究通过组合来自不同来源的图像,未标记和/或标记有不同标准的图像,并解决图像访问限制,这表明了为宫颈图像分类开发特定于宫颈图像分类的新方向。

Cervical cancer is the fourth most common cancer in women worldwide. The availability of a robust automated cervical image classification system can augment the clinical care provider's limitation in traditional visual inspection with acetic acid (VIA). However, there are a wide variety of cervical inspection objectives which impact the labeling criteria for criteria-specific prediction model development. Moreover, due to the lack of confirmatory test results and inter-rater labeling variation, many images are left unlabeled. Motivated by these challenges, we propose a self-supervised learning (SSL) based approach to produce a pre-trained cervix model from unlabeled cervical images. The developed model is further fine-tuned to produce criteria-specific classification models with the available labeled images. We demonstrate the effectiveness of the proposed approach using two cervical image datasets. Both datasets are partially labeled and labeling criteria are different. The experimental results show that the SSL-based initialization improves classification performance (Accuracy: 2.5% min) and the inclusion of images from both datasets during SSL further improves the performance (Accuracy: 1.5% min). Further, considering data-sharing restrictions, we experimented with the effectiveness of Federated SSL and find that it can improve performance over the SSL model developed with just its images. This justifies the importance of SSL-based cervix model development. We believe that the present research shows a novel direction in developing criteria-specific custom deep models for cervical image classification by combining images from different sources unlabeled and/or labeled with varying criteria, and addressing image access restrictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源