论文标题

与原子薄片整合的纳米腔中模式转移的量化

Quantization of mode shifts in nanocavities integrated with atomically thin sheets

论文作者

Fang, N., Yamashita, D., Fujii, S., Otsuka, K., Taniguchi, T., Watanabe, K., Nagashio, K., Kato, Y. K.

论文摘要

二维分层材料的独特光学特性对于实现集成光子学的功能增加具有吸引力。由于范德华的性质,这些材料是与纳米级光子结构集成的理想选择。在这里,我们报告了精心设计的气模硅光子晶体纳米束腔,以通过二维材料有效控制。通过系统地研究二维材料的各种类型和厚度,我们能够证明增强的响应能力可以使谐振波长的巨大变化。在宏观区域上原子上精确的厚度,很少的薄片会导致模式变化的量化。我们提取薄片的介电常数,发现它与单层的层数无关。通过堆叠和去除超薄薄片来证明腔体的柔性重新配置。通过非常规的空腔设计,我们的结果为与二维材料集成的光子设备开辟了新的可能性。

The unique optical properties of two-dimensional layered materials are attractive for achieving increased functionality in integrated photonics. Owing to the van der Waals nature, these materials are ideal for integrating with nanoscale photonic structures. Here we report on carefully designed air-mode silicon photonic crystal nanobeam cavities for efficient control through two-dimensional materials. By systematically investigating various types and thickness of two-dimensional materials, we are able to show that enhanced responsivity allows for giant shifts of the resonant wavelength. With atomically precise thickness over a macroscopic area, few-layer flakes give rise to quantization of the mode shifts. We extract the dielectric constant of the flakes and find that it is independent of the layer number down to a monolayer. Flexible reconfiguration of a cavity is demonstrated by stacking and removing ultrathin flakes. With an unconventional cavity design, our results open up new possibilities for photonic devices integrated with two-dimensional materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源