论文标题

在多维投影中,扭曲感知刷牙以可靠的聚类分析

Distortion-Aware Brushing for Reliable Cluster Analysis in Multidimensional Projections

论文作者

Jeon, Hyeon, Aupetit, Michaël, Lee, Soohyun, Ko, Kwon, Kim, Youngtaek, Quadri, Ghulam Jilani, Seo, Jinwook

论文摘要

刷牙是2D散点图中的一种常见交互技术,使用户可以在连续的,封闭的区域中选择聚类点进行进一步分析或过滤。但是,将常规刷牙应用于多维(MD)数据的2D表示,即多维投影(MDPS),可能会导致由于MDP诱导的扭曲而导致的不可靠的聚类分析,而这不准确地代表了原始MD数据的群集结构。为了减轻这个问题,我们引入了一种新颖的MDP刷牙技术,称为失真感知刷牙。当用户执行刷牙时,失真感知的刷牙通过动态重新定位投影中的点,将数据点靠近MD空间中的刷点,同时将遥远的数据点拉开,从而纠正了当前刷子周围的扭曲。这种动态调整可帮助用户更准确地刷新MD簇,从而实现更可靠的聚类分析。我们对24名参与者的用户研究表明,失真感知的刷牙在准确地分离MD空间中的簇,并在扭曲中保持稳定,从而明显优于MDP的先前刷牙技术。我们通过两种用例进一步证明了技术的有效性:(1)对地理空间数据进行聚类分析以及(2)交互式标记MD簇。

Brushing is a common interaction technique in 2D scatterplots, allowing users to select clustered points within a continuous, enclosed region for further analysis or filtering. However, applying conventional brushing to 2D representations of multidimensional (MD) data, i.e., Multidimensional Projections (MDPs), can lead to unreliable cluster analysis due to MDP-induced distortions that inaccurately represent the cluster structure of the original MD data. To alleviate this problem, we introduce a novel brushing technique for MDPs called Distortion-aware brushing. As users perform brushing, Distortion-aware brushing corrects distortions around the currently brushed points by dynamically relocating points in the projection, pulling data points close to the brushed points in MD space while pushing distant ones apart. This dynamic adjustment helps users brush MD clusters more accurately, leading to more reliable cluster analysis. Our user studies with 24 participants show that Distortion-aware brushing significantly outperforms previous brushing techniques for MDPs in accurately separating clusters in the MD space and remains robust against distortions. We further demonstrate the effectiveness of our technique through two use cases: (1) conducting cluster analysis of geospatial data and (2) interactively labeling MD clusters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源