论文标题

开发基于资源的FPGA基于FPGA的神经网络回归模型

Development of a resource-efficient FPGA-based neural network regression model for the ATLAS muon trigger upgrades

论文作者

Ospanov, Rustem, Feng, Changqing, Dong, Wenhao, Feng, Wenhao, Zhang, Kan, Yang, Shining

论文摘要

本文报告了在大型强子撞机(LHC)的未来硬件MUON触发器系统中,在未来的硬件MUON触发系统中开发了基于资源有效的FPGA神经网络回归模型。 ATLAS物理计划的基石有效地实时选择了MUON候选人。借助计划的ATLAS升级,高光度LHC,将安装一个全新的基于FPGA的硬件MUON触发系统,该系统将在10 $μs$延迟窗口中处理完整的MUON检测器数据。该升级计划的大型FPGA设备应具有足够的备用资源,以允许部署机器学习方法,以改善识别MUON候选者并搜索新的异国情调颗粒。我们的神经网络回归模型有望改善对中央检测器区域背景事件的主要来源的排斥,这是由于横向动量较低的MUON候选者所致。该模型是在FPGA中使用157个数字信号处理器和约5,000个查找表实现的。使用320 MHz时钟频率在FPGA设备中实现时,模拟网络延迟和死时间分别为122和25 NS。还开发了另外两个FPGA实现,以研究设计选择对资源利用率和延迟的影响。我们的FPGA实现的性能参数很好地符合未来MUON触发系统的要求,因此为Atlas实验提供了用于将来数据的机器学习方法的可能性。

This paper reports on the development of a resource-efficient FPGA-based neural network regression model for potential applications in the future hardware muon trigger system of the ATLAS experiment at the Large Hadron Collider (LHC). Effective real-time selection of muon candidates is the cornerstone of the ATLAS physics programme. With the planned ATLAS upgrades for the High Luminosity LHC, an entirely new FPGA-based hardware muon trigger system will be installed that will process full muon detector data within a 10 $μs$ latency window. The large FPGA devices planned for this upgrade should have sufficient spare resources to allow deployment of machine learning methods for improving identification of muon candidates and searching for new exotic particles. Our neural network regression model promises to improve rejection of the dominant source of background trigger events in the central detector region, which are due to muon candidates with low transverse momenta. This model was implemented in FPGA using 157 digital signal processors and about 5,000 lookup tables. The simulated network latency and deadtime are 122 and 25 ns, respectively, when implemented in the FPGA device using a 320 MHz clock frequency. Two other FPGA implementations were also developed to study the impact of design choices on resource utilisation and latency. The performance parameters of our FPGA implementation are well within the requirements of the future muon trigger system, therefore opening a possibility for deploying machine learning methods for future data taking by the ATLAS experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源