论文标题

采用大数据的分析工程概念方法

Towards a Conceptual Approach of Analytical Engineering for Big Data

论文作者

Rossi, Rogerio, Hirama, Kechi

论文摘要

分析对应于大数据的相关且具有挑战性的阶段。使用多个知识领域(例如计算,统计数据,数据挖掘等)进行实践,从能够为决策者服务的速度上生成的不同类型的广泛数据集(PETABYTE时代)的知识产生。在大数据域中,分析也被视为能够为组织增加价值的过程。除了证明价值外,分析还应考虑运营工具和模型以支持决策。为了增加价值,也将分析作为一些大数据价值链的一部分,例如NIST等提出的信息价值链,本文详细介绍了。同样,提出了一些成熟模型,因为它们代表着重要的结构,以使用特定的技术,技术和方法来促进大数据分析的连续实施。因此,通过深入研究,使用特定的文献参考和用例,我们试图概述一种方法,以确定考虑四个支柱的大数据分析的分析工程:数据,模型,工具和人员;和三个过程组:获取,保留和修订;为了使可行并定义一个可能被指定为分析组织的组织,负责从大数据分析领域的数据中产生知识。

Analytics corresponds to a relevant and challenging phase of Big Data. The generation of knowledge from extensive data sets (petabyte era) of varying types, occurring at a speed able to serve decision makers, is practiced using multiple areas of knowledge, such as computing, statistics, data mining, among others. In the Big Data domain, Analytics is also considered as a process capable of adding value to the organizations. Besides the demonstration of value, Analytics should also consider operational tools and models to support decision making. To adding value, Analytics is also presented as part of some Big Data value chains, such the Information Value Chain presented by NIST among others, which are detailed in this article. As well, some maturity models are presented, since they represent important structures to favor continuous implementation of Analytics for Big Data, using specific technologies, techniques and methods. Hence, through an in-depth research, using specific literature references and use cases, we seeks to outline an approach to determine the Analytical Engineering for Big Data Analytics considering four pillars: Data, Models, Tools and People; and three process groups: Acquisition, Retention and Revision; in order to make feasible and to define an organization, possibly designated as an Analytics Organization, responsible for generating knowledge from the data in the field of Big Data Analytics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源