论文标题
用恒星收缩切割查询算法
Cut query algorithms with star contraction
论文作者
论文摘要
我们研究了确定带有切割查询的简单图的边缘连接性的复杂性。我们表明(i)有一个有界的随机算法,该算法可以使用$ o(n)$ cut查询来计算边缘连接,并且(ii)有一个有界的误差量子算法,该量子量子算法可以使用$É(\ sqrt {n})计算边缘连接性。我们使用一种称为“星收缩”的新技术证明了这些结果,以在保留非平凡的最小切割的同时随机收缩边缘。在恒星收缩顶点中,随机收缩一小组随机选择的顶点上的边缘。与Ghaffari,Nowicki和Thorup [Soda'20]的相关2-Out收缩技术相反,Star收缩仅收缩CORTCONTEX-DISHINCENEX-DISHING STAR STAR子图,这使其可以通过切割查询有效地实现。 从项目(i)绑定的$ o(n)$即使是由于更简单的连接问题而闻名,并改善了Rubinstein,Schramm和Weinberg [ITCS'18]绑定的$ O(n \ log^3 n)$。在合理的猜想中,界限是紧密的,即连通性的随机通信复杂性是$ω(n \ log n)$,这是自Babai,Frankl和Simon [focs'86]的开创性工作以来的一个空旷的问题。该界限还排除了在简单图上使用边缘连接性的,以证明超线性随机查询下限,以最大程度地减少对称的下函数。项目(ii)给出了几乎季度的分离,并具有随机的复杂性,并解决了李,桑塔和张[苏打水21]的开放问题。该算法也可以看作是制造$É(\ sqrt {n})$矩阵 - 矢量乘法查询到邻接矩阵。 最后,我们通过设计一种在顶点到达设置中计算边缘连接的一通算法来证明在剪切查询设置之外使用恒星收缩。这与需要两个通过的边缘到达设置形成对比。
We study the complexity of determining the edge connectivity of a simple graph with cut queries. We show that (i) there is a bounded-error randomized algorithm that computes edge connectivity with $O(n)$ cut queries, and (ii) there is a bounded-error quantum algorithm that computes edge connectivity with $Õ(\sqrt{n})$ cut queries. We prove these results using a new technique called "star contraction" to randomly contract edges of a graph while preserving non-trivial minimum cuts. In star contraction vertices randomly contract an edge incident on a small set of randomly chosen vertices. In contrast to the related 2-out contraction technique of Ghaffari, Nowicki, and Thorup [SODA'20], star contraction only contracts vertex-disjoint star subgraphs, which allows it to be efficiently implemented via cut queries. The $O(n)$ bound from item (i) was not known even for the simpler problem of connectivity, and improves the $O(n\log^3 n)$ bound by Rubinstein, Schramm, and Weinberg [ITCS'18]. The bound is tight under the reasonable conjecture that the randomized communication complexity of connectivity is $Ω(n\log n)$, an open question since the seminal work of Babai, Frankl, and Simon [FOCS'86]. The bound also excludes using edge connectivity on simple graphs to prove a superlinear randomized query lower bound for minimizing a symmetric submodular function. Item (ii) gives a nearly-quadratic separation with the randomized complexity and addresses an open question of Lee, Santha, and Zhang [SODA'21]. The algorithm can also be viewed as making $Õ(\sqrt{n})$ matrix-vector multiplication queries to the adjacency matrix. Finally, we demonstrate the use of star contraction outside of the cut query setting by designing a one-pass semi-streaming algorithm for computing edge connectivity in the vertex arrival setting. This contrasts with the edge arrival setting where two passes are required.