论文标题
纯标记模块的无环复合物的同型类别
The homotopy category of acyclic complexes of pure-projective modules
论文作者
论文摘要
令$ r $为具有身份的任何戒指。我们表明,纯标志性$ r $ modules的所有无环链复合物的同型类别是紧凑的三角类别。我们通过构建Abelian模型结构来实现这一目标,该结构将这种同质类别类别置于回忆中,并与另外两个紧凑的三角类别类别进行回忆:$ r $的通常派生类别和$ r $的纯派生类别。这也为派生类别提供了新的模型。
Let $R$ be any ring with identity. We show that the homotopy category of all acyclic chain complexes of pure-projective $R$-modules is a compactly generated triangulated category. We do this by constructing abelian model structures that put this homotopy category into a recollement with two other compactly generated triangulated categories: The usual derived category of $R$ and the pure derived category of $R$. This also gives a new model for the derived category.