论文标题
硬板:用硬班来增强零射门学习
HardBoost: Boosting Zero-Shot Learning with Hard Classes
论文作者
论文摘要
这项工作是对零射门学习(ZSL)中所谓的硬级问题的系统分析,也就是说,某些看不见的类别比其他类别不成比例地影响ZSL的表现,以及如何通过检测和利用硬性类来解决问题。起初,我们报告了我们的经验发现,即硬级问题是一种普遍存在的现象,并且在ZSL中使用的特定方法是持续存在的。然后,我们发现,在看不见的类别中,高语义亲和力是硬度和设计两个指标来检测硬式类别的合理原因。最后,提出了两个框架,以通过检测和利用硬性类别(一个在电感设置下,另一个在跨偏置环境下)来解决问题。拟议的框架可以容纳大多数现有的ZSL方法,以实现很少的努力,从而进一步促进其表演。对三个流行基准测试的广泛实验通过识别和利用ZSL中的硬性类,证明了这些好处。
This work is a systematical analysis on the so-called hard class problem in zero-shot learning (ZSL), that is, some unseen classes disproportionally affect the ZSL performances than others, as well as how to remedy the problem by detecting and exploiting hard classes. At first, we report our empirical finding that the hard class problem is a ubiquitous phenomenon and persists regardless of used specific methods in ZSL. Then, we find that high semantic affinity among unseen classes is a plausible underlying cause of hardness and design two metrics to detect hard classes. Finally, two frameworks are proposed to remedy the problem by detecting and exploiting hard classes, one under inductive setting, the other under transductive setting. The proposed frameworks could accommodate most existing ZSL methods to further significantly boost their performances with little efforts. Extensive experiments on three popular benchmarks demonstrate the benefits by identifying and exploiting the hard classes in ZSL.