论文标题
金融时间序列预测的多头临时注意双线网络
Multi-head Temporal Attention-Augmented Bilinear Network for Financial time series prediction
论文作者
论文摘要
财务时间序列预测是时间序列分析领域中最具挑战性的领域之一。这主要是由于财务时间序列数据的高度非平稳性和嘈杂性。通过社区逐步设计的专门神经网络,融合了先前的领域知识,许多财务分析和预测问题已成功解决。时间关注机制是一种神经层设计,由于它能够专注于重要的时间事件,因此最近获得了流行。在本文中,我们根据时间关注和多头关注的思想提出了一个神经层,以扩展基础神经网络同时关注多个时间实例的能力。使用大型极限订单市场数据验证我们方法的有效性,以预测中价运动的方向。我们的实验表明,与基线模型相比,多头颞注意模块的使用导致预测性能增强。
Financial time-series forecasting is one of the most challenging domains in the field of time-series analysis. This is mostly due to the highly non-stationary and noisy nature of financial time-series data. With progressive efforts of the community to design specialized neural networks incorporating prior domain knowledge, many financial analysis and forecasting problems have been successfully tackled. The temporal attention mechanism is a neural layer design that recently gained popularity due to its ability to focus on important temporal events. In this paper, we propose a neural layer based on the ideas of temporal attention and multi-head attention to extend the capability of the underlying neural network in focusing simultaneously on multiple temporal instances. The effectiveness of our approach is validated using large-scale limit-order book market data to forecast the direction of mid-price movements. Our experiments show that the use of multi-head temporal attention modules leads to enhanced prediction performances compared to baseline models.