论文标题
跨性别的积聚和伪造的黑洞周围的风,并与一般相对论解决方案进行比较
Transonic accretion and winds around Pseudo-Kerr black holes and comparison with general relativistic solutions
论文作者
论文摘要
积聚在黑洞上的光谱和时序特性取决于它们的密度和温度分布,这反过来又来自基础动力学。因此,对包括流体动力学和辐射转移的流动的准确描述是解释观察结果的必要条件。在非旋转黑洞的情况下,对周围时空的伪牛顿描述使人们能够在预测光谱和时序特性方面取得了重大进展。这种形式主义缺乏旋转黑洞。在本文中,我们表明存在从一般相对论(GR)径向动量方程中衍生的“自然”电位的确切形式。在原本牛顿的方程组中使用该电位可以非常准确地描述跨音量流,这可以与从完整的GR框架中获得的解决方案进行比较。我们研究了特定能量和角动量跨越的参数空间中的临界点和离心压力的性能,并与GR流体动力学的结果进行了比较。我们表明,该电位可安全地用于Kerr参数$ -1 <a <1 $的整个范围,用于建模旋转黑洞周围的观察结果。我们假设流动是无关的。因此,它具有恒定能量和角动量的非疾病。这些假设非常接近黑洞,因为与粘性时间尺度相比,插入时间表要短得多。
Spectral and timing properties of accretion flows on a black hole depend on their density and temperature distributions, which in turn come from the underlying dynamics. Thus, an accurate description of the flow which includes hydrodynamics and radiative transfer is a must to interpret the observational results. In the case of non-rotating black holes, Pseudo-Newtonian description of surrounding space-time enables one to make a significant progress in predicting spectral and timing properties. This formalism is lacking for spinning black holes. In this paper, we show that there exists an exact form of 'natural' potential derivable from the general relativistic (GR) radial momentum equation. Use of this potential in an otherwise Newtonian set of equations allows to describe transonic flows very accurately as is evidenced by comparing with solutions obtained from the full GR framework. We study the properties of the critical points and the centrifugal pressure supported shocks in the parameter space spanned by the specific energy and the angular momentum, and compare with the results of GR hydrodynamics. We show that this potential can safely be used for the entire range of Kerr parameter $-1<a<1$ for modeling of observational results around spinning black holes. We assume the flow to be inviscid. Thus, it is non-dissipative with constant energy and angular momentum. These assumptions are valid very close to the black hole as the infall timescale is much shorter as compared to the viscous timescale.