论文标题
强大的对比度学习反对嘈杂的观点
Robust Contrastive Learning against Noisy Views
论文作者
论文摘要
对比学习依赖于一个假设,即正对包含相关视图,例如图像的贴片或视频的共发生多模式信号,这些信号共享了有关实例的某些基本信息。但是,如果违反了这个假设怎么办?文献表明,对比学习在存在嘈杂观点的情况下,例如,没有明显的共享信息,会产生次优表示。在这项工作中,我们提出了一种新的对比损失函数,该功能与嘈杂的观点相当强大。我们通过证明与嘈杂的二进制分类的鲁棒对称损失的联系,并建立基于Wasserstein距离度量的相互信息最大化的新对比度,提供了严格的理论理由。拟议的损失完全是情态不平智的,并且可以简单地替换Infonce损失,这使得很容易应用于现有的对比框架。我们表明,我们的方法对图像,视频和图形对比度学习基准测试基准进行了一致的改进,这些基准表现出各种真实的噪声模式。
Contrastive learning relies on an assumption that positive pairs contain related views, e.g., patches of an image or co-occurring multimodal signals of a video, that share certain underlying information about an instance. But what if this assumption is violated? The literature suggests that contrastive learning produces suboptimal representations in the presence of noisy views, e.g., false positive pairs with no apparent shared information. In this work, we propose a new contrastive loss function that is robust against noisy views. We provide rigorous theoretical justifications by showing connections to robust symmetric losses for noisy binary classification and by establishing a new contrastive bound for mutual information maximization based on the Wasserstein distance measure. The proposed loss is completely modality-agnostic and a simple drop-in replacement for the InfoNCE loss, which makes it easy to apply to existing contrastive frameworks. We show that our approach provides consistent improvements over the state-of-the-art on image, video, and graph contrastive learning benchmarks that exhibit a variety of real-world noise patterns.