论文标题
MobileFaceSwap:视频面部交换的轻量级框架
MobileFaceSwap: A Lightweight Framework for Video Face Swapping
论文作者
论文摘要
先进的面部交换方法已取得了吸引力的结果。但是,这些方法中的大多数都有许多参数和计算,这使得将它们应用于实时应用程序或将其部署在移动电话等边缘设备上。在这项工作中,我们建议通过根据身份信息动态调整模型参数,为主题不合时宜的面部交换提出一个轻巧的身份感知动态网络(IDN)。特别是,我们通过引入两种动态神经网络技术(包括权重预测和权重调制)来设计有效的身份注入模块(IIM)。 IDN更新后,可以将其应用于给定任何目标图像或视频的交换面。提出的IDN仅包含0.50亿个参数,并且每个框架需要0.33克拖鞋,使其能够在手机上实时视频面交换。此外,我们还引入了一种基于知识蒸馏的方法,用于稳定训练,并采用了损失重新加权模块来获得更好的合成结果。最后,我们的方法通过教师模型和其他最先进的方法取得了可比的结果。
Advanced face swapping methods have achieved appealing results. However, most of these methods have many parameters and computations, which makes it challenging to apply them in real-time applications or deploy them on edge devices like mobile phones. In this work, we propose a lightweight Identity-aware Dynamic Network (IDN) for subject-agnostic face swapping by dynamically adjusting the model parameters according to the identity information. In particular, we design an efficient Identity Injection Module (IIM) by introducing two dynamic neural network techniques, including the weights prediction and weights modulation. Once the IDN is updated, it can be applied to swap faces given any target image or video. The presented IDN contains only 0.50M parameters and needs 0.33G FLOPs per frame, making it capable for real-time video face swapping on mobile phones. In addition, we introduce a knowledge distillation-based method for stable training, and a loss reweighting module is employed to obtain better synthesized results. Finally, our method achieves comparable results with the teacher models and other state-of-the-art methods.