论文标题
高阶费米子中近派问题的确切解决方案
Exact solutions of Kondo problems in higher-order fermions
论文作者
论文摘要
最初由Affleck and Ludwig(AL)开发的临近问题的保形场理论(CFT)方法已大大提高了近多物理学的基本知识。 CFT方法的杂种杂质的方法基于必要的近似值,即在费米表面的狭窄能量窗口中低洼激发的线性化。这种治疗方法在正常的金属浴中效果很好,但是在具有费米点和高阶分散关系的系统中遇到了根本困难。此类系统的突出例子是最近提供的拓扑半学,并具有紧急的高阶费米子。在这里,我们开发了一种新的CFT技术,该技术可为高阶费米昂系统中的Kondo问题提供精确的解决方案。我们的方法不需要对低洼的激发的任何线性化,更重要的是,它严格地巩固了高阶费米子的整个能量光谱。因此,它为评估有限温度下的热力学量提供了更坚固的理论基础。我们的工作大大扩大了CFT技术的范围,并带来了超出常规方法的前所未有的应用程序。
The conformal field theory (CFT) approach to Kondo problems, originally developed by Affleck and Ludwig (AL), has greatly advanced the fundamental knowledge of Kondo physics. The CFT approach to Kondo impurities is based on a necessary approximation, i.e., the linearization of the low-lying excitations in a narrow energy window about the Fermi surface. This treatment works well in normal metal baths, but encounters fundamental difficulties in systems with Fermi points and high-order dispersion relations. Prominent examples of such systems are the recently-proposed topological semimetals with emergent higher-order fermions. Here, we develop a new CFT technique that yields exact solutions to the Kondo problems in higher-order fermion systems. Our approach does not require any linearization of the low-lying excitations, and more importantly, it rigorously bosonizes the entire energy spectrum of the higher-order fermions. Therefore, it provides a more solid theoretical base for evaluating the thermodynamic quantities at finite temperatures. Our work significantly broadens the scope of CFT techniques and brings about unprecedented applications beyond the reach of conventional methods.