论文标题

六维Vlasov-Maxwell方程的平行低级别求解器

A Parallel Low-Rank Solver for the Six-Dimensional Vlasov-Maxwell Equations

论文作者

Allmann-Rahn, Florian, Grauer, Rainer, Kormann, Katharina

论文摘要

连续vlasov模拟可以用于高度准确的完全动力学等离子体的建模。最近,该方法在现实的等离子体配置中的适用性取得了巨大进展。但是,希望完全动力学模拟固有的高计算成本降低是可取的,尤其是在高速速度空间分辨率下。为此,可以采用低级近似值。到目前为止,可用的低级别求解器仅限于静电系统或低维度,因此不能应用于大多数空间,天体物理和融合等离子体。在本文中,我们为完整的六维电磁vlasov-Maxwell方程提供了一个新的平行低级别求解器,并在速度空间中粒子分布函数压缩。特别注意大众保护和高斯定律。低级vlasov求解器被应用于等离子体湍流和磁重新连接的标准基准问题,并将其与完整的网格方法进行了比较。它以显着降低的计算成本产生准确的结果。

Continuum Vlasov simulations can be utilized for highly accurate modelling of fully kinetic plasmas. Great progress has been made recently regarding the applicability of the method in realistic plasma configurations. However, a reduction of the high computational cost that is inherent to fully kinetic simulations would be desirable, especially at high velocity space resolutions. For this purpose, low-rank approximations can be employed. The so far available low-rank solvers are restricted to either electrostatic systems or low dimensionality and can therefore not be applied to most space, astrophysical and fusion plasmas. In this paper we present a new parallel low-rank solver for the full six-dimensional electromagnetic Vlasov-Maxwell equations with a compression of the particle distribution function in velocity space. Special attention is paid to mass conservation and Gauss's law. The low-rank Vlasov solver is applied to standard benchmark problems of plasma turbulence and magnetic reconnection and compared to the full grid method. It yields accurate results at significantly reduced computational cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源