论文标题
二元格的顶部
Tops of dyadic grids
论文作者
论文摘要
我们扩展了欧几里得空间中立方体二元格网格的概念,以包括无限的二元立方体。这些二元网格的“顶部”形成了欧几里得空间的平铺,该层面受(有限的)单位立方体的约束类似于在瓷砖欧几里得空间中产生的约束。这些顶部是通过加权HAAR和ALPERT小波的两个重量规范不平等的理论出现的。
We extend the notion of a dyadic grid of cubes in Euclidean space to include infinite dyadic cubes. These `tops' of a dyadic grid form a tiling of Euclidean space which is subject to the constraints similar to those arising in tiling Euclidean space by (finite) unit cubes. These tops arise in the theory of two weight norm inequalities through weighted Haar and Alpert wavelets.