论文标题

二元格的顶部

Tops of dyadic grids

论文作者

Alexis, Michel, Sawyer, Eric, Uriarte-Tuero, Ignacio

论文摘要

我们扩展了欧几里得空间中立方体二元格网格的概念,以包括无限的二元立方体。这些二元网格的“顶部”形成了欧几里得空间的平铺,该层面受(有限的)单位立方体的约束类似于在​​瓷砖欧几里得空间中产生的约束。这些顶部是通过加权HAAR和ALPERT小波的两个重量规范不平等的理论出现的。

We extend the notion of a dyadic grid of cubes in Euclidean space to include infinite dyadic cubes. These `tops' of a dyadic grid form a tiling of Euclidean space which is subject to the constraints similar to those arising in tiling Euclidean space by (finite) unit cubes. These tops arise in the theory of two weight norm inequalities through weighted Haar and Alpert wavelets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源