论文标题

通过成对类平衡来缓解长尾实例分割

Relieving Long-tailed Instance Segmentation via Pairwise Class Balance

论文作者

He, Yin-Yin, Zhang, Peizhen, Wei, Xiu-Shen, Zhang, Xiangyu, Sun, Jian

论文摘要

由于班级之间的培训样本极大不平衡,长尾实例细分是一项具有挑战性的任务。它会导致头部阶层的严重偏见(大部分样本)与尾部的偏差。这使得“如何适当地定义和减轻偏见”是最重要的问题之一。先前的工作主要使用标签分布或平均分数信息来指示粗粒偏置。在本文中,我们探索以挖掘混乱矩阵,该矩阵带有细粒度的错误分类细节,以减轻成对的偏见,从而概括了粗糙的偏见。为此,我们提出了一种新颖的成对类平衡(PCB)方法,该方法建立在混乱矩阵上,该矩阵在训练过程中进行了更新,以积累正在进行的预测偏好。 PCB在训练过程中生成了反式软标签,以进行正规化。此外,开发了一种迭代学习范式,以支持这种偏见中的渐进式正则化。可以将PCB插入并播放到任何现有方法中作为补充。 LVIS的实验结果表明,我们的方法可以实现没有铃铛和哨声的最先进的表现。各种体系结构的卓越结果表明了概括能力。代码和训练有素的模型可在https://github.com/megvii-research/pcb上获得。

Long-tailed instance segmentation is a challenging task due to the extreme imbalance of training samples among classes. It causes severe biases of the head classes (with majority samples) against the tailed ones. This renders "how to appropriately define and alleviate the bias" one of the most important issues. Prior works mainly use label distribution or mean score information to indicate a coarse-grained bias. In this paper, we explore to excavate the confusion matrix, which carries the fine-grained misclassification details, to relieve the pairwise biases, generalizing the coarse one. To this end, we propose a novel Pairwise Class Balance (PCB) method, built upon a confusion matrix which is updated during training to accumulate the ongoing prediction preferences. PCB generates fightback soft labels for regularization during training. Besides, an iterative learning paradigm is developed to support a progressive and smooth regularization in such debiasing. PCB can be plugged and played to any existing method as a complement. Experimental results on LVIS demonstrate that our method achieves state-of-the-art performance without bells and whistles. Superior results across various architectures show the generalization ability. The code and trained models are available at https://github.com/megvii-research/PCB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源