论文标题

通过几何方法关于非辐射线性波的不平等

An inequality regarding non-radiative linear waves via a geometric method

论文作者

Li, Liang, Shen, Ruipeng, Wang, Chenhui

论文摘要

在这项工作中,我们考虑操作员 \ [ (\ Mathbf {t} g)(x)= \ int _ {\ mathbb {s}^2} g(x \ cdotω,ω)dΩ,\ quad x \ in \ mathbb {r}^3,\; g \ in l^2(\ mathbb {r} \ times \ mathbb {s}^2)。 \] 这是ra transform的伴随操作员。如果功能$ g $紧凑,我们设法给出了Infinity方法附近$ \ mathbf {t} g $的最佳$ l^6 $衰减估计。作为应用程序,我们对外部区域$ \ \ {(x,t)\ in \ Mathbb {r}^3 \ times \ times \ times \ mathbb {r}:| x | x | x |> r+| t | \} $进行了对3D线性波方程的衰减估计。这种衰减估计值在波方程的能量方法中很有用

In this work we consider the operator \[ (\mathbf{T} G) (x)= \int_{\mathbb{S}^2} G(x\cdot ω, ω) dω, \quad x\in \mathbb{R}^3, \; G\in L^2(\mathbb{R}\times \mathbb{S}^2). \] This is the adjoint operator of the Radon transform. We manage to give an optimal $L^6$ decay estimate of $\mathbf{T} G$ near the infinity by a geometric method, if the function $G$ is compactly supported. As an application we give decay estimate of non-radiative solutions to the 3D linear wave equation in the exterior region $\{(x,t)\in \mathbb{R}^3 \times \mathbb{R}: |x|>R+|t|\}$. This kind of decay estimate is useful in the channel of energy method for wave equations

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源