论文标题

在近期硬件上缩放量子近似优化

Scaling Quantum Approximate Optimization on Near-term Hardware

论文作者

Lotshaw, Phillip C., Nguyen, Thien, Santana, Anthony, McCaskey, Alexander, Herrman, Rebekah, Ostrowski, James, Siopsis, George, Humble, Travis S.

论文摘要

量子近似优化算法(QAOA)是近期量子计算机的一种方法,可以在解决组合优化问题方面可能证明计算优势。但是,QAOA的生存能力取决于其性能和资源需求如何具有问题大小和复杂性来实现现实硬件实现。在这里,我们通过合成具有不同连接级别的硬件体系结构的优化电路来量化预期资源需求。假设嘈杂的门操作,我们估计以高概率采样理想化的QAOA电路输出所需的测量数量。我们显示了测量的数量,因此总时间到了解决方案,在问题大小和问题图学位以及QAOA ANSATZ,GATE不忠和逆硬件图形方面的深度呈指数增长。这些问题可以通过提高硬件连接性或最近提出的对QAOA的修改来缓解这些问题,从而通过更少的电路层实现更高的性能。

The quantum approximate optimization algorithm (QAOA) is an approach for near-term quantum computers to potentially demonstrate computational advantage in solving combinatorial optimization problems. However, the viability of the QAOA depends on how its performance and resource requirements scale with problem size and complexity for realistic hardware implementations. Here, we quantify scaling of the expected resource requirements by synthesizing optimized circuits for hardware architectures with varying levels of connectivity. Assuming noisy gate operations, we estimate the number of measurements needed to sample the output of the idealized QAOA circuit with high probability. We show the number of measurements, and hence total time to solution, grows exponentially in problem size and problem graph degree as well as depth of the QAOA ansatz, gate infidelities, and inverse hardware graph degree. These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源