论文标题

计算化学中校准预测不确定性的漫长道路

The long road to calibrated prediction uncertainty in computational chemistry

论文作者

Pernot, Pascal

论文摘要

计算化学(CC)中的不确定性定量(UQ)仍处于起步阶段。很少有CC方法被设计为对其预测提供信心水平,并且大多数用户仍然不当地依赖于平均绝对误差作为精度度量。可靠的不确定性定量方法的发展至关重要,特别是对于计算化学而言,要自信地用于工业过程。对CC-UQ文献的综述表明,没有报告或验证预测不确定性的通用标准程序。我在这里考虑使用在气象学和机器学习中开发的概念(校准和清晰度)来验证概率预测者的分析工具。这些工具适用于CC-UQ,并应用于复合方法,贝叶斯集合方法,机器学习和后验统计方法提供的预测不确定性数据集。

Uncertainty quantification (UQ) in computational chemistry (CC) is still in its infancy. Very few CC methods are designed to provide a confidence level on their predictions, and most users still rely improperly on the mean absolute error as an accuracy metric. The development of reliable uncertainty quantification methods is essential, notably for computational chemistry to be used confidently in industrial processes. A review of the CC-UQ literature shows that there is no common standard procedure to report nor validate prediction uncertainty. I consider here analysis tools using concepts (calibration and sharpness) developed in meteorology and machine learning for the validation of probabilistic forecasters. These tools are adapted to CC-UQ and applied to datasets of prediction uncertainties provided by composite methods, Bayesian Ensembles methods, machine learning and a posteriori statistical methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源