论文标题

数据驱动的安全增益制定控制

Data Driven Safe Gain-Scheduling Control

论文作者

Modares, Amir, Sadati, Nasser, Modares, Hamidreza

论文摘要

使用多倍模型的离散时间线性参数系统(LPV)提出了基于数据的安全增益制度控制器。首先,提供了$λ$ - 收集条件,在该条件下,LPV系统的安全性和稳定性是通过安全集的Minkowski功能统一的。然后,为了绕过确定系统动力学的要求,提供了基于数据的闭环LPV系统的基于数据的表示,以直接利用收集的数据并构建安全控制器。结果表明,与确定LPV系统相比,需要较弱的数据丰富性要求直接学习闭环安全控制策略。利用基于闭环数据的表示形式直接设计数据驱动的增益制定控制器,该控制器保证了$λ$ - 合同,从而使安全集的不变性。还表明,针对多面体(椭圆形)安全设置的数据驱动增益式控制器设计的问题(半定义程序)。提供了一个模拟示例来显示提出的方法的有效性。

Data-based safe gain-scheduling controllers are presented for discrete-time linear parameter-varying systems (LPV) with polytopic models. First, $λ$-contractivity conditions are provided under which safety and stability of the LPV systems are unified through Minkowski functions of the safe sets. Then, to bypass the requirement to identify the system dynamics, a data-based representation of the closed-loop LPV system is provided to directly exploit collected data and construct a safe controller. It is shown that weaker data richness requirements are needed to directly learn a closed-loop safe control policy than to identify the LPV system. The closed-loop data-based representation is leveraged to directly design data-driven gain-scheduling controllers that guarantee $λ$-contractiveness, and, thus, invariance of the safe sets. It is also shown that the problem of designing a data-driven gain-scheduling controller for a polyhedral (ellipsoidal) safe set amounts to a linear program (a semi-definite program). A simulation example is provided to show the effectiveness of the presented approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源