论文标题

短期负载预测中的人工智能和统计技术:评论

Artificial Intelligence and Statistical Techniques in Short-Term Load Forecasting: A Review

论文作者

Nassif, Ali Bou, Soudan, Bassel, Azzeh, Mohammad, Attilli, Imtinan, AlMulla, Omar

论文摘要

电力公用事业取决于短期需求预测,以预期重大变化时主动调整生产和分布。这项系统评价分析了2000年至2019年之间在学术期刊上发表的240件作品,该作品着重于将人工智能(AI),统计和混合模型应用于短期负载预测(STLF)。这项工作代表了迄今为止对该主题的作品最全面的评论。对文献进行了完整的分析,以确定最流行,最准确的技术以及现有的差距。研究结果表明,尽管人工神经网络(ANN)仍然是最常用的独立技术,但研究人员一直非常选择不同技术的混合组合来利用单个方法的组合优势。该综述表明,这些混合组合通常可以实现超过99%的预测准确性。短期预测的最成功持续时间已被确定为每小时一天的预测持续时间。该评论已经确定了访问模型所需的数据集缺乏。在亚洲,欧洲,北美和澳大利亚以外的其他研究地区已经发现了一个很大的差距。

Electrical utilities depend on short-term demand forecasting to proactively adjust production and distribution in anticipation of major variations. This systematic review analyzes 240 works published in scholarly journals between 2000 and 2019 that focus on applying Artificial Intelligence (AI), statistical, and hybrid models to short-term load forecasting (STLF). This work represents the most comprehensive review of works on this subject to date. A complete analysis of the literature is conducted to identify the most popular and accurate techniques as well as existing gaps. The findings show that although Artificial Neural Networks (ANN) continue to be the most commonly used standalone technique, researchers have been exceedingly opting for hybrid combinations of different techniques to leverage the combined advantages of individual methods. The review demonstrates that it is commonly possible with these hybrid combinations to achieve prediction accuracy exceeding 99%. The most successful duration for short-term forecasting has been identified as prediction for a duration of one day at an hourly interval. The review has identified a deficiency in access to datasets needed for training of the models. A significant gap has been identified in researching regions other than Asia, Europe, North America, and Australia.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源